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Motivated by recent experiments on nonlocal transport through multiterminal superconducting hybrid struc-
tures, we present self-consistent calculations based on quasiclassical Green’s functions for the order parameter,
currents, and voltages in a system consisting of a diffusive superconductor connected to two normal and one
superconducting electrodes. We investigate nonequilibrium effects for different biasing conditions correspond-
ing to measurements of the nonlocal conductance and of the nonlocal resistance. It is shown that while the
nonlocal conductance does not change its sign, this change might be observed in a nonlocal resistance mea-
surement for certain parameter range. The change in sign of the nonlocal signal takes places at a voltage of the
order of the self-consistent gap of the superconducting region. We show that this is not related to the nonlocal
Andreev processes but rather to nonequilibrium effects. We finally discuss the case of four terminal measure-
ments and demonstrate that a change in sign in the nonlocal resistance appears when the current injected into
the superconductor exceeds a critical value. The connection to the existing experiments is discussed.
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I. INTRODUCTION

The possibility to create and control entangled electron
pairs from a superconductor has renewed the interest in
transport through superconductor-normal metal hybrid
structures.1–5 The basic idea is to exploit the long-range co-
herence of the Andreev reflection,6 in order to couple two
spatially separated normal electrodes connected to a super-
conducting region within a distance of the order of the su-
perconducting coherence length �S. An Andreev processes
that takes place at two different interfaces is called a
“crossed” Andreev reflection �CAR�. As suggested in Ref. 7
spatial correlations can be probed by nonlocal transport ex-
periments. A typical setup for detection of CAR processes
consists of a grounded superconducting �S� region connected
to normal �N� electrodes. The information on such processes
would be encoded, for instance, in the voltage which is mea-
sured in one of the S/N interfaces when a current is injected
through the other one. Besides CAR processes, individual
electrons can also tunnel across the superconductor. This nor-
mal tunneling has been called “elastic cotunneling” �EC�.
CAR and EC contributions to the nonlocal conductance have
opposite signs, and in the lowest order of tunneling cancel
each other.8 For higher orders in the tunneling the EC domi-
nates over CAR �Ref. 9� and the nonlocal signal becomes
finite. Surprisingly a change in sign in the nonlocal resis-
tance and conductance was reported as a function of the local
voltage for a NSN layered structure2 and a FSF multiterminal
structure4 �F denotes a ferromagnetic metal�. According to
Ref. 2 by low �high� voltages EC �CAR� processes dominate
the nonlocal transport. Similar behavior was observed in Ref.
4 for samples with high S/F barrier resistance. The latter

experiment also showed dominance of CAR processes at low
voltages for samples with higher interface transparency.
These experimental results have lead to several theoretical
works,9–17 which attempt to find a microscopic description
for those observations. However, up to now theories based
on noninteracting models could not explain the change in
sign of the nonlocal conductance.10–13 For a layered NSN
structure, as the one of Ref. 2, the change in sign of the
nonlocal conductance has been explained by taking into ac-
count interaction of the conducting electrons with their elec-
tromagnetic environment.16 The later description is valid in
the tunneling limit, thus the observation of negative nonlocal
conductances in the case of good interface transparencies
remains without microscopic explanation yet.

In principle, a description of the nonlocal transport in
terms of CAR and EC is only valid in the tunneling limit. In
this case the system is in a quasiequilibrium state, i.e., the
current �or the corresponding bias voltage� is much smaller
than its critical value and the distribution function of quasi-
particles is the equilibrium one. This assumption has been
made in most of the theoretical works mentioned above. In
particular the superconducting gap was assumed to have the
bulk value, i.e., the superconducting order parameter was not
affected by the possible deviation of the distribution function
from its equilibrium value. In some experiments though, this
is not the case. For example in Refs. 1, 3, and 5 the trans-
parencies of the S/N interfaces are not necessarily low, and
in Ref. 3 the current injected into the S region reached its
critical value. Thus, for a proper description of these experi-
ments one needs to go beyond the quasiequilibrium ap-
proach. A first attempt was done in Refs. 14 and 15. It was
shown that nonequilibrium effects may play a crucial role on

PHYSICAL REVIEW B 80, 174508 �2009�

1098-0121/2009/80�17�/174508�9� ©2009 The American Physical Society174508-1

http://dx.doi.org/10.1103/PhysRevB.80.174508


the nonlocal transport properties. In particular, in Ref. 14
self-consistent calculations based on a two-dimensional
tight-binding model were implemented. It was shown that far
from the quasiequilibrium regime the nonlocal transport can-
not longer be described in simple terms of EC and CAR
processes. For some set of parameters, a change in sign in
the nonlocal resistance was obtained. This change in sign is
not related to the predominance of CAR but rather to the
possibility of having a negative local conductance at the in-
terface where the current is injected. In Ref. 15 a nonmono-
tonic behavior of the nonlocal resistance as a function of the
temperature was obtained, which resembles the observations
of Ref. 3. However, the nonlocal resistance as a function of
the injected current or bias voltage was not investigated in
that work.

In the above-mentioned theoretical works, one computes
the nonlocal conductance in a three-terminal device. In other
words, one assumes that one of the normal terminals is bi-
ased to a voltage VL, while the second normal terminal is
grounded. In this way one determines the current IR flowing
into the latter terminal and computes the nonlocal conduc-
tance Gnl=dIR /dVL. Experimentally, however, it is simpler to
fix the injected current through one of the normal terminals
and measure the voltage induced at the second normal termi-
nal where no current is flowing. Thus, the measured quantity
is the nonlocal resistance. Moreover, some experiments were
performed in a multiterminal geometry.3

In this paper we present a complete self-consistent theory
for the nonlocal transport through a diffusive superconduct-
ing region connected to several normal electrodes. We calcu-
late both, the nonlocal conductance and resistance with the
help of the quasiclassical Green’s function �GF� approach. In
a first part we concentrate on a three-terminal device, where
the current is injected from a normal electrode NL into the
superconducting region S, maintaining the second normal
electrode NR grounded. We determine the self-consistent gap,
the current flowing into NR and compute the nonlocal con-
ductance Gnl. We show that our model, as in previous works,
predicts no change in sign for Gnl. In a second part we con-
sider again a three-terminal device, but now we assume that
no current is flowing at the S /NR interface terminal. We then
determine the self-consistent gap, the voltage induced in NR,
and determine the nonlocal resistance Rnl. For certain range
of parameters we obtain a change in sign Rnl due to the
appearance of a negative local conductance at the NL /S in-
terface. Finally, we considered a four terminal setup. Again
we assume that the current through the S /NR interface is
zero, but now we determine the voltage induced in the NR
electrode measured with respect to the end of the supercon-
ductor in which no current is flowing. In this case we obtain
a change in sign as in the experiment of Ref. 3. As we show
below the origin of this change in sign is not due to a nega-
tive local conductance, but to the nonequilibrium distribution
created in the superconductor by the injected current, which
eventually leads to a transition into the normal state.

The rest of the paper is organized as follows: in Sec. II we
introduce the model and basic equations used throughout the
paper, Secs. III and IV are devoted to analyze the results for
the three-terminal situation �we discuss the conductance
measurement conditions in Sec. III and the resistance mea-

surement case in Sec. IV�, and finally in Sec. V we analyze
the four terminal case. Some concluding remarks are given
in Sec. VI.

II. MODEL AND BASIC EQUATIONS

A typical experimental setup for the measurement of non-
local transport properties is shown in Fig. 1�c�. On top of a
nanoscale superconducting wire one places several �in our
case two� normal wires. A current is injected from one of the
normal electrodes and flows in the direction shown in the
figure. The nonlocal resistance is then obtained by measuring
the potential difference between the other normal electrode
and the end of the superconducting wire through which no
current is flowing. A strong enough nonlocal signal is mea-
sured when the distance between the normal leads does not
exceed much the coherence length of the superconductor.

A self-consistent computation of the spatial variation in
the gap and currents in such a device is a formidable task
which we will not address here. Nevertheless, the mean fea-
tures of the system can be described by considering the ge-
ometry shown in Figs. 1�a� and 1�b�. A superconducting re-
gion S is connected to two normal electrodes NL and NR and
to a superconducting electrode Se, made of the same super-
conducting material as S. The three interfaces will be de-
scribed by characteristic energies �L, �R, and �S, defined be-
low. As we are not interested in the spatial variation in the
nonlocal correlations, we simplify the problem by assuming
that the central superconducting region S has dimensions
smaller than the superconducting coherence length, which in
the diffusive limit is given by �S=�D /�. Here � is the su-
perconducting gap and D is the diffusion coefficient. Thus,
we may assume that the order parameter and the nonequilib-
rium distribution are uniform over S.18

In order to determine either the nonlocal conductance
�Fig. 1�a�� or resistance �Fig. 1�b�� we need to calculate the
current density j and the self-consistent order parameter � in
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FIG. 1. �Color online� Sketch of a three-terminal device for �a�
measurement of the nonlocal conductance and �b� measurement of
the nonlocal resistance. �c� Typical experimental setup for measure-
ment of the nonlocal resistance.

F. S. BERGERET AND A. LEVY YEYATI PHYSICAL REVIEW B 80, 174508 �2009�

174508-2



the S region. As one can see from our results below, we
always find a stationary current state. This behavior is dis-
tinctive for junctions consisting of a mesoscopic supercon-
ductor in contact with a bulk one.20 Thus, j and � can be
expressed in terms of the Keldysh component of the matrix
GF ǧ

� =
�

4
� d�ĝ12

K , �1�

j =
1

8eGN
� d� Tr��̂3ǧ � ǧ�K, �2�

where � is the BCS coupling constant which determines the
critical temperature, and RN is the normal state resistance of
the S region. The function ǧ is a 4�4 matrix in the
Nambu � Keldysh space with the usual structure

ǧ = 	ĝR ĝK

0 ĝA 
 , �3�

while ĝ are 2�2 matrices in Nambu space. In the diffusive
limit these functions are the solutions of the Usadel
equation21

− D � �ǧ � ǧ� − i���̂3, ǧ� − i��, ǧ� = − i��̌in, ǧ� , �4�

supplemented by the normalization condition ǧ2= 1̌. Here �̌in
is the self-energy term describing inelastic processes. In the

time relaxation approach �̌in is proportional to 1 /�in, where
�in is the inelastic relaxation time. We will assume that 1 /�in
is the smallest energy scale and neglect this term. At the
interfaces with the electrodes we use the Kupryianov-
Lukichev boundary conditions22

Dǧ � ǧ�n = �id�ǧ, ǧi� , �5�

where ǧi are the GF of the electrodes �i=L ,R ,Se�, �i
=�Th /2rB, and �Th=D /d2 is the Thouless energy, rB
=RBi /RN, Rbi is the ith barrier resistance per unit area, and n
denotes a unit vector normal to the interface. We assume that
the GFs of the electrodes remain unchanged and equal to the
bulk values, i.e., ĝR�A�= 	�̂3 in the normal leads, and
ĝS

R�A�=gBCS
R�A��̂3+ fBCS

R�A�i�̂2 in the superconductor electrode,
where gBCS

R�A�=� /���	 i
�2−�0
2 and fBCS

R�A�=�0 /���	 i
�2−�0
2.

While the Keldysh components are given by

ĝi
K = ĝi

RF̂i − F̂iĝ
A, �6�

where

F̂i = Fi+�̂0 + Fi−�̂3,

Vi is the voltage in electrode i, and Fi	

= 1
2 �tanh�

�+eVi

2T �	 tanh�
�−eVi

2T ��. We also assume that VSe
=0. In

principle the boundary conditions Eq. �5� are valid for low
transmitting interfaces. In the present work we consider that
the interface transparencies may vary in the range 10−3

−10−1 for which Eq. �5� is sufficiently reliable.
With the help of Eq. �5� we can calculate the total current

at each interface using the expression:

eIiRN =
�i

8�Th
� d� Tr �3�ǧi, ǧ�K. �7�

In this case the GF inside S does not vary considerably and
the Usadel Eq. �4� can be integrated over space coordinates
using the boundary conditions Eq. �5�. In this way one ob-
tains a set of algebraic equations which can be written in a
compact form

��̌, ǧ� = 0, �8�

where

� = �
i=L,R,S

�iǧi + ��3 + �̌ − �̌in.

Equation �8� is equivalent to the Nazarov’s circuit theory
equations,23 which were used in Refs. 11 and 24 for nonlocal
transport calculations. The solution for the R, A and K com-
ponents of ǧ which satisfy Eq. �8� and the normalization
condition can be formally be written as20,25

ĝR�A� =
�̂R�A�

��̂R�A��̂R�A�
, �9�

ĝK =
�̂K − ĝR�̂KĝA

��̂R�̂R + ��̂A�̂A
�10�

Substituting these expressions into Eqs. �1� and �2� enable us
to obtain numerically the self-consistent order parameter, the
currents through the interfaces and the nonlocal voltage in-
duced at the right electrode in the resistance measurement
case.

III. MEASUREMENT OF THE NONLOCAL
CONDUCTANCE

In this section we consider the experimental setup of Fig.
1�a�. The left normal electrode is biased by a voltage source
at VL. For a nonlocal conductance measurement we will as-
sume that the NR is grounded �VR=0�, and compute the cur-
rent IR through the interface S /NR from Eqs. �7�, �9�, and
�10� and the self-consistent order parameter � from Eq. �1�.
Before we address the nonlocal properties of the system let
us discuss the results concerning local properties.

In Fig. 2�a� we show the amplitude of � as a function of
the bias voltage VL for �S=0.2�0, �L=0.1�0, and three dif-
ferent values of �R=0.01–0.1, corresponding to transmission
coefficients in the range 10−3−10−2 �we assume that the
length of the superconducting region is about 50 nm�. All
energies are given in units of �0, which is the value of the
order parameter in the bulk at T=0. For a fixed low value of
VL, � is reduced by increasing the coupling with the right
normal electrode, which is a consequence of the inverse
proximity effect. At some value VL

� 0.8�0 of the order of
the self-consistent �, one can see an abrupt reduction of the
self-consistent order parameter. For voltages larger than VL

�

the quasiparticle current through S becomes considerably
larger �Figs. 2�b� and 2�c��, i.e., the system is driven out of
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equilibrium. An interesting consequence of this nonequilib-
rium state for voltages VL� �VL

� is the enhancement of the
self-consistent gap by increasing the temperature, as shown
in Fig. 3. This effect is related to the stimulation of super-
conductivity by quasiparticle currents in SIS systems and
was studied both theoretical26 and experimentally.27

From Fig. 2�a� one can also see that the suppression of �
at VL

� becomes more abrupt the weaker the coupling with the
right electrode is. Figures 2�b� and 2�c� also show the corre-
sponding current at the left and right interfaces. As expected
the larger the resistance of the right interface �small �R� the
smaller the value of IR. A strong nonequilibrium situation
takes place when most of the current injected flows into the
superconducting electrode, i.e., when �R is small enough �in
our example �R=0.01�. In this case the gap becomes multi-
valued and this is reflected in the behavior of the currents IL
and IR. Multivalued solutions for the self-consistent gap were
also found in Ref. 26 for SIS systems and recently in Ref. 28
for a NSN system.

Another interesting feature of this system is the existence
of a region of voltages for which the local conductance is
negative �see Fig. 2�b��. This behavior was also obtained in
Ref. 20 for a system consisting of a superconducting link
separating a normal and a superconducting electrode. Also in
Ref. 14 negative local conductance was obtained for a two-
dimensional ballistic superconductor attached to two normal
electrodes. Notice however, that the part of the curve corre-
sponding to a negative conductance would be not accessible
in current biased experiments. If we now fix the value of �R
at its maximum value �R=0.1 and vary �L, we see that even
for the smallest coupling ��L=0.01�0� the variation in the
gap and the currents is smooth and no signatures of multi-
valued solutions appears for this range of parameters �see
bottom row of Fig. 2�.

Let us now focus on the nonlocal transport and compute
the nonlocal conductance, which can be obtained easily from
the knowledge of IR �Figs. 2�c� and 2�f��. It is given by the
expression

Gnl =
�IR

�VL
�11�

and shown in Fig. 4 as a function of the bias voltage VL, for
different values of the coupling energies �L,R. In all cases Gnl
is very small in the region of low voltages. This is in agree-
ment with the zero nonlocal conductance obtained in the
lowest order of tunneling,8 due to the cancellation of the EC
and CAR processes. However, our results are in all order of
tunneling and therefore a dominance of EC �negative Gnl� is
obtained in accordance to Ref. 9. For voltages of the order of
the self-consistent �, the value of Gnl becomes significant.
However, no change in sign is observed. As mentioned in the
introduction, noninteracting models do not exhibit a change
in sign of the nonlocal conductance in three-terminal NSN
structures. This can only be achieved when electron-electron
interactions are taken into account.16

FIG. 2. �Color online� The amplitude of the self-consistent order parameter, the current IL injected from the left normal electrode and the
current IR measured at the right electrode, as a function of the voltage VL. Panels �a�–�c� for �S=0.2, �L=0.1, and T=0.01�0 and different
values of �R. Panels �d�–�f� for �S=0.2, �R=0.1, and T=0.01�0 and different values of �L. We have defined R=RN�Th /�0.

FIG. 3. �Color online� The amplitude of the self-consistent order
parameter as a function of the voltage VL for different temperatures.
Notice that in the range of temperatures shown and for large values
of VL the gap is enhanced by increasing T.
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IV. MEASUREMENT OF THE NONLOCAL RESISTANCE
IN A THREE-TERMINAL DEVICE

In a real experiment it is easier to measure a voltage
rather than a current. Indeed the experiments of Refs. 1–5
were performed in �a� the current biased regime and �b� in-
stead of the current, the nonlocal resistance �or voltage� was
measured. Theoretically, it is not simple to impose a current
bias. Therefore we will still work in the voltage biased case
but determine the induced nonlocal voltage and resistance
imposing zero current at the S /NR interface. Thus, all the
current injected from the left normal electrode flows into the
superconducting electrode Se �see Fig. 1�b��. The current at
the right interface is given by �cf. Eq. �7��

eIRRBR =
1

8
� d� Tr ĝK��� −

1

4
� d�s���	tanh	 � + eVR

2T



− tanh	 � − eVR

2T


 , �12�

where s���= �gR−gA� /2 is the density of states of S and RBR

is the R barrier resistance per unit area. The first term in the
rhs is proportional to the quantity Q� identified in the litera-
ture as the charge imbalance potential,29 which appears due
to a nonequilibrium distribution in the superconductor. The
second term is the usual quasiparticle current term. The volt-
age VR is measured with respect to the ground �see Fig. 1�b��
and it is obtained by imposing IR=0.

The results for �, the injected current IL and the induced
voltage VR as a function of the bias voltage VL are shown in
Fig. 5, for fixed values of �S,L and different values of �R in
the same range as in Fig. 2. In the case of low values of �R,
the self-consistent gap has a very similar behavior as in the
preceding section. However, for the largest value �R=0.1�0
the suppression of � is larger as the one obtained by impos-
ing VR=0. Notice also that the region of negative local con-
ductance �Fig. 5�b��, associated with the abrupt change in the
order parameter appears now for all values of �R. It is clear
that by having imposed IR=0 all the current injected must
flow through the S /Se interface and our system behaves simi-
larly to the N /S /S studied in Ref. 20. In Fig. 5�c� we also
show the voltage VR induced in the right electrode calculated
by equalizing Eq. �12� to zero. At low VL values the induced
voltage VR is very small, but it experiences a jump at the
value of VL where the self-consistent gap exhibits its maxi-
mal drop.

We have now all quantities required to compute the non-
local resistance which would be measured. This can be cal-
culated from the expression

Rnl =
�VX

�IL
=

�VX

�VL
	 �IL

�VL

−1

. �13�

The measured voltage VX depends on the experimental setup.
We are considering here the three-terminal structure of Fig.
1�b� and determining VR respect to the ground. Thus in this
case VX=VR, i.e., the one shown in Fig. 5�c�. According to
Eq. �13� there are two factors determining the nonlocal re-
sistance. One which is the inverse of the local conductance
GLL

−1 =dVL /dIL and which decrease by increasing �L. The sec-
ond contribution is given by dVR /dVL which is nonzero only
if a nonequilibrium distribution appears in the S region and is

FIG. 4. �Color online� The voltage dependence of the �negative�
nonlocal conductance Gnl normalized with respect to R=RN�Th /�0.
We have chosen T=0.01�0, �S=0.2, �L=0.1, and T=0.01�0 and
different values of �R.

FIG. 5. �Color online� �a� The amplitude of the self-consistent order parameter, �b� the current IL injected from the left normal electrode,
and �c� the induced voltage VR measured at the right electrode as a function of the voltage VL for �S=0.2, �L=0.1, and T=0.01�0 and
different values of �R.
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related to the charge imbalance term �cf. Eq. �12��.
In Fig. 6 we show the dependence Rnl�VL� for two values

of �R and �L=0.1�0, �S=0.2�0, and T=0.01�0. The change
in sign of Rnl is a consequence of the negative local conduc-
tance which appears between the values VL0.8�0 and VL
�0 �see Fig. 5�b��. The position of the first peak of Rnl is
determined by the value of VL at which � drops substantially,
while the position of second peak is determine by �0. As
mentioned above, in current bias experiments the curve Rnl
may look very different to the ones shown in Fig. 6, since the
region of negative local conductance may not be observed.

In experiments as those of Refs. 1, 3, and 5 the current
flows along a superconducting wire, while in our model it
flows into the reservoir Se. For simplicity we have assume
that the latter remains unaltered for all values VL considered
here. In particular the value of the gap is the bulk BCS one
for any value of VL. However, in the experiments, when the
current flowing through the wire reaches the critical value
the superconducting gap is suppressed homogeneously in the
region where the current is flowing. This leads to the obser-
vation of only one peak in the nonlocal resistance.3 In the
next section we will model this situation.

We should also emphasize that the change in sign of the
nonlocal resistance obtained in Fig. 6 is due to the fact that
the local conductance GLL=dIL /dVL becomes negative for
some values of VL �cf. Fig. 5�b��. If the coupling �S is large
enough, the local conductance remains always positive and
so the nonlocal resistance. This is shown in Fig. 7, where the
amplitude of the self-consistency gap, the current injected,
and the voltage induced at the right electrode are plotted as a
function of VL, for �S=1,1.5 and 2�0. If one compares these
results with those obtained for a smaller �S �Fig. 5�, one sees
that � is now only weakly suppressed and that the current IL
increases monotonically. Thus the nonlocal resistance is al-
ways positive as it is shown in Fig. 8.

Finally, we show in Fig. 9 the temperature dependence of
the zero bias nonlocal resistance for different values of the
coupling parameter �S. We can see that while for the small
values of �S the nonlocal resistance increases monotonously
with the temperature, for larger values of �S, Rnl reaches a
maximum value. In the latter case the charge imbalance ef-
fect becomes important and dominates over the local con-
ductance factor for large temperatures. This behavior is in
agreement with previous calculations of Rnl in a supercon-
ducting quantum dot.13 One could conclude as in Ref. 15 that
the nonmonotonic behavior of Rnl�T� is in qualitative agree-
ment with the observations of Refs. 1 and 3. However, we
hardly believe that. If this would be the case then one should
obtain for the same parameter range a change in sign for Rnl
as a function of the injected current, as observed in the
experiments.3 On the contrary, Fig. 9 clearly shows a mono-
tonic increase in Rnl with the applied voltage. In the next
section we will show that the change in sign of Rnl observed
in the experiment is due to the suppression of the supercon-
ductivity by the injection of a current. Also the peak of Rnl
observed as a function of temperature could be understood
within this model.

V. FOUR-TERMINAL STRUCTURE

We now consider a situation closer to that of the experi-
ments of Refs. 3 and 5, in which the nonlocal resistance

FIG. 6. �Color online� The voltage dependence of the nonlocal
resistance calculated from Eq. �13� for �S=0.2�0, �L=0.1�0, and
T=0.01�0, and two values of �R.

FIG. 7. �Color online� The amplitude of the self-consistent order parameter, the current IL injected from the left normal electrode and the
induced voltage VR measured at the right electrode, as a function of the voltage VL, for �L=�R=0.1, T=0.01�0, and different values of �S.
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�voltage� has been measured in a multiterminal setup consist-
ing of a superconducting wire attached to several normal
terminals. In these experiments the nonlocal voltage corre-
sponds to the potential difference between one end of the
superconducting wire and one of the normal leads. We model
these experimental situations as shown in Fig. 10. On the top
of a superconducting wire we place two normal contacts.
Current flows from the NL contact to the Ne due to the bias
voltage VL applied between the contacts. We are interested in
the voltage difference measured between the end of the wire,
which we denote by S�, and an additional normal contact NR.
We use on purpose the same notation as in Fig. 1 in order to
use straightforwardly the expressions derived in Sec. II. The
only difference is that the drain electrode is now in the nor-
mal state and that we measure the voltage difference between
the end S� of the superconducting slab and the normal elec-
trode NR. The electrode Ne is grounded. In order to compute
the resistance measured between S� and NR we proceed as in
the last section, determining the Green functions from Eqs.
�9� and �10� and the self-consistent gap. Now we impose that
the currents through the S /NR and through the S /S� inter-
faces are zero. The current trough the S /S� interface can be
written as the sum

IS/S� = IJ + Iqp �14�

of the Josephson and the quasiparticle contribution, respec-
tively. The first is given by the product of anomalous Green’s
functions in Eq. �2� while the latter by the product of normal
components. Since no current is flowing into S� we assume
that there the Green’s functions are those in equilibrium,
with ��� equal to the self-consistent ��� in the S region at
VL=0, and a phase � which is determined by imposing the
condition of no current through the S /S� interface. For volt-
ages lower than a critical voltage VL

� �� we always found a
finite value of �. In this case the voltage V� induced in S�
equals zero, and the measured Vnl coincides with VR of the
previous section. The voltage VL

� is the voltage at which the
self-consistent gap vanishes, i.e., when the current flowing in
S reaches its critical value. For values of VL larger than this
value the quasiparticle current becomes finite, and a voltage
V� is induced in S�. We compute it from an expression ob-
tained by equalizing Eq. �7� to zero. Thus, the nonlocal re-
sistance is given by Eq. �13� where now VX=VR for VL
�VL

� and VX=VR−V� for VL�VL
�. In Fig. 11 we show the

result of our calculation for Rnl as a function of VL. It shows
a peak at VL

�. Since the latter is of the order of �, the peak is
shifted to lower voltages by increasing the temperature �Fig.
11�. This behavior is in agreement with the experimental

FIG. 8. �Color online� The voltage dependence of nonlocal re-
sistance for the same parameters as in Fig. 7.

FIG. 9. �Color online� The temperature dependence of the zero
bias nonlocal resistance measure in a three-terminal device for dif-
ferent values of �S. We have chosen �L=�R=0.1�0.

S
NR

Ne

NL

S’

VL
Vnl

IL

FIG. 10. �Color online� Sketch of the four-terminal structure
under consideration.

FIG. 11. �Color online� The nonlocal resistance measured in a
four terminal structure as a function of the bias voltage VL for �L

=�R=0.1�0, �S=0.2, and different values of the temperature. Inset:
the nonlocal resistance as a function of the temperature at zero bias.
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observation of Ref. 3, where the peak occurred at values of
the bias current close to the value of critical current of the
superconducting wire. The change in sign of Rnl is related to
the nonequilibrium situation created in S by the injection of a
current from NL. We also show in the inset of Fig. 11 the
temperature dependence of Rnl, which exhibits a pronounced
peak for VLVL

�. This is again in agreement with the obser-
vations of Ref. 3. These results demonstrate that the model
studied here contains the main ingredients for describing ex-
periments on nonlocal transport as the one of Ref. 3. Within
this model the change in sign of the nonlocal resistance has
its origin in the deviation of the distribution function of the
superconductor from the equilibrium one. Notice, that as in
Ref. 3, the change in sign of Rnl occurs at the critical current
which corresponds to the voltage VL

� in our model.
In other experiments,2,5 however, the change in sign oc-

curred at lower voltages. This discrepancy is at the moment
not clarified and may be related to the inclusion of electron-
electron interactions as proposed in Ref. 16.

VI. CONCLUSIONS

We have presented a self-consistent analysis of the trans-
port properties of a structure consisting of a mesoscopic su-
perconductor whose dimensions are smaller than the charac-
teristic length �S, attached to two normal and one
superconducting terminals. We have analyzed two measure-
ment methods: one in which the detector �R� electrode is
grounded and the leaking current is measured, and one in
which the current through this lead is fixed to zero and the

induced voltage is measured. In both cases we observe that
the self-consistent order parameter in the mesoscopic central
region exhibits an abrupt drop at a certain voltage of the
order of the self-consistent �. Associated to this drop the
local differential conductance at the injector lead �L� may
become negative for certain values of the coupling param-
eters, resulting in a change in sign of the nonlocal resistance.
As we stress throughout this manuscript, this change in sign
would not be related to a dominance of CAR over EC pro-
cesses but to a nonequilibrium effect. We have still described
another mechanism for the appearance of negative nonlocal
resistance which is probably most suitable for explaining the
observations of Ref. 3. This mechanism is applicable in a
four terminal geometry and corresponds to the injection of
large currents which may switch the superconducting region
into the normal state. The observation of a change in sign in
the nonlocal signal at smaller bias and small transparencies
like the ones reported in Refs. 2 and 5 are certainly not
possible to be explained with the theoretical model presented
in this work and might be related to the influence of electron-
electron interactions, as already pointed out in Ref. 16. Fur-
ther work for analyzing the combined effect of interactions
and nonequilibrium effects is under progress.
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